Unibio has engaged in a project entitled Environmentally Friendly Protein Production (the EFPro² project) with grant support from Innovation Fund Denmark. This project is made in collaboration with DTU, SDU (University of Southern Denmark), Aarhus University and Vestjyllands Andel.

The project will construct a U-Loop fermentation pilot plant in a DTU-owned building in Lyngby with a 100 litre pilot plant with focus on optimizing Unibio’s fermentation technology. This unit will provide the needed conditions for testing and evaluating products based on methanotrophic bacteria.

Simultaneously, the EFPro² project will concentrate on developing and optimizing UniProtein+, a specialized protein for pigs, to develop a methodology to produce different amino acid profiles fitting the physiological demand for protein and amino acids of pigs (including piglets), thus supporting the request for enhancing the environmental performance of feed production.

It is the composition of the protein in terms of essential amino acids (rather than the content in crude protein) that determines its quality and feeding value. Pigs must ingest different quantities of all essential amino acids in the protein before they can use it for maximum feed efficiency and rate of gain.

For example, lysine, the most important limiting essential amino acid in pig feed, is present at relatively low levels in most grains, and as a result protein supplements have to be mixed with grains to provide the minimum lysine needed by the animal. Though lysine is already available commercially as a supplement, other amino acids like leucine, isoleucine and histidine are only available from crop and meal ingredients. This is why the tailoring of the UniProtein+ amino acid profile represents a keystone of this project.

The success criterion for the EFPro² project is a proven ability to commercially produce a feedstuff that enables the production of a higher quality pig feed with lower costs than those observed today, through the substitution of a maximal amount of crop and meal ingredients in compound pig feed.

SDU will take a key research role in the project with the aim of providing state-of-the-art Life Cycle Assessments (LCA) quantifying the environmental consequences of various protein supply strategies for today and the future. Through this, SDU will quantify to which extent it is possible, through the optimized UniProtein+ as well as through other protein supply strategies, to decouple protein supply from land use.

The LCAs to be performed will include:

  • The development of a methodology, in collaboration with VA, to quantify changes in overall feed formulation as a result of a changed protein supply, considering the detailed chemical composition of each ingredient. This has so far been disregarded in published LCA studies.
  • A systematic quantification and assessment of land use changes impacts
  • The implications of a change in price in various protein and carbohydrate ingredients
  • The implications of various methane feedstock to produce Uniprotein+
  • The implications of various future framework conditions for the energy system and land demand
  • Strategies to prioritize the use of land

Send us a message